
Building successful
applications

The process to:

1

Before we get started 2-3

An introduction to developing successful applications 4-10

Planning and designing your application 11-20

How to start coding 21-25

Gathering and processing feedback 26-32

Ways to add even more value 33-36

Wrapping it up 37-38

About VIKTOR 39

2

3

So, you have decided that you want to build an application; that is great! This guide is

here to help you build apps that provide real value to your work and that other people

will definitely want to use as well.

Over the past years, we, the application developers at VIKTOR, have built many apps

for many different industries. We have learned a lot from that and now want to share

our experiences with you. The principles and processes we explain in this guide are

the same as we apply daily. They have helped us build anything from simple apps,

designed to save time, to advanced engineering applications that are used to

automatically calculate underground tunnels, dikes, and other large structures. Most

importantly, these apps help us make people happy. And is there something better

than that?

In this guide, we will provide you with tools, methods, and tips for building your own

application that you can start using right now. Don’t worry, you do not need to do

everything all at once. First, pick the parts that make the most sense to you and start

implementing those into your process. Keep in mind that it is important to try things,

see how it works out, and use your new insights to keep improving!

How will we go about this? In each chapter, a different aspect of building a good

application will be highlighted. First, mapping out the process, then planning and

designing, after that coding, then the importance of gathering and processing

feedback, and at last a recap of and some tips and trick for the best ways to create

real value from your application!

While you’re at it, don’t forget: Building good apps is all about people. Listening to

others, taking their feedback seriously, and using it to improve the application. These

people may be your colleague sitting next to you, your manager, or someone outside

of your company. It does not matter. Throughout this guide, we will call them ‘clients’,

and we think you should treat them as such.

4

5

Before you start building an application yourself, you should know everything about

the steps that you need to take to do so. In this chapter, these steps will be explained,

and you will learn the best method to structure your development process for

building a successful application.

When you develop a successful software tool yourself, there are six steps that you

need to follow. These are: Define, design, develop, test, deploy and get feedback. Here,

we will explain each step in short, and most importantly, elaborate on how you should

work through the process of building awesome tools that other people will want to

use as well.

First, the steps:

6

In this world, we build many things following a linear and stepwise process. This

means you first define the end goal and then follow the steps that are required to get

there. For example, think of a building. First, you decide what you are going to build.

Then you lay the foundations, start adding the levels, place the roof, and continue

until you have finished the construction. So, what we believe is that if we have a good

plan, we just need to follow it to get a good result. But is this also true when building

an application?

In the software world, we call this linear process ‘the Waterfall Model’. Most people

agree that this method does not work so well for building apps due to two reasons:

• Because most end-users (read: clients) don’t know the exact requirements for

the application beforehand. Only after they see the software in action can they

tell what is good and what is still missing or needs to be improved.

• Because it is hard for a developer to predict all difficulties that are going to

occur during the development process and if the features that they invented

really solve the problem of the client.

That is why we don’t believe you can make a master plan beforehand, simply follow

those steps, and then end up with a successful application. It is a considerable risk;

you invest all your time and energy and then have a ‘grand inauguration’ which could

become either a great success or the biggest fiasco.

7

Instead of a linear method, a more versatile and explorative approach has proven to

yield the best results. This one is called the Agile method. Its core principle is to

collaborate with the client as much as possible and iterate a lot during the

development process. This doesn’t mean we are saying that you should not have a

clear goal in mind. In fact, you really should. It is just that the exact way your software

will end up looking and working is something that should develop over time and in

collaboration with the end-user. It cannot be defined at the beginning.

Instead of planning all details and building the app in one sit, the Agile method

proposes dividing the project into a series of short sprints. After each sprint, you will

deliver the most basic app that fulfils the requirements (the minimum viable

product), even if it is not fully functional, so that end-users can test it and provide

feedback. With that feedback in mind, you and the client agree on the priorities and

requirements for the next sprints. In that way, you will always work on what provides

value for the client and end with a much better product than when you would have

built everything in one shot.

8

Each sprint usually lasts for about two weeks, followed by one week of client testing

and feedback. We do not recommend taking longer than this if you are programming

full-time. It is sometimes best to take baby steps in the beginning with new clients or

on new projects and ask for feedback even during a sprint to ensure mutual

understanding.

Approaching software development in this way ensures that you end up with a better

end-product. You also put in less effort since you lower the risk of investing a lot of

time in something that clients don’t like. Even more important, including end-users

into the development process results in tools that people will want to use eventually.

Our experience is that social factors are at least as important as technical

functionalities. For example, end-users and especially domain experts can be very

critical about the plans. In the beginning, negative thoughts may arise, like ‘This is too

complex, it is impossible to automate!’, ‘I have been doing it this way for 10 years, why

should I change the process?’ or ‘Will this tool make me lose my job?’.

However, things change once the first versions of the application appear and people

can actually see that their feedback is being taken seriously. The synergy between

developers, domain experts and end-users grows, and the people who once were the

most critic end-users will become the biggest ambassadors, promoting the

application you have built together.

“We see our customers as invited guests to a party, and
we are the hosts. It’s our job every day to make every
important aspect of the customer experience a little
better.”

Jeff Bezos

9

In this section, we will give you a brief overview of the process and explain each step

in short. In the next chapters we will explain the different steps in more detail and

give you handy tips.

Building successful applications always start with a big dream: What do you want to

achieve ultimately? Next, you can begin designing the workflow required to get there,

all of it. This is too much to start; that is why select a small portion of the workflow to

start creating an app. After you have defined all the details, you can start designing

and creating the application, not in one shot but in several short sprints. After each

sprint, you will get end-user feedback (clients) and define the following steps to get

closer to your big dream.

10

Everything starts by defining a Big Hairy Audacious Goal (BHAG). Dare to dream,

everything is possible. This BHAG will guide the development process. Don’t think

about all the features yet. Rather think about what you want to achieve; for example,

‘I want to automate a tunnel’s design fully’.

To improve your process, you need to understand it thoroughly first. Map out your

process and involve everyone you need to be able to understand all the details. Create

a workflow diagram and see how the process can be improved to get closer to your

BHAG. Organise a brainstorm, think about your ideal process and the benefit of the

changes you want to make. Don’t overthink possible technical challenges yet.

Select a small portion of the workflow diagram and start with that. Which portion this

will be depends on two things: Maximum impact and feasibility. In other words, where

can you make a significant improvement with little effort? That is always a good

starting point.

This is where you start using the Agile method. Formulate short term objectives in

the form of user stories and write them down. For this you can use a product backlog.

User stories are statements written from the end-user’s perspective. The idea here is

to define what the user wants to achieve. Not how they want to achieve it. That part

you can leave to the developers.

For your first development sprint, you should create the simplest app that fulfils the

requirements: A minimum viable product. Let the end-user interact with the product

and ask them for feedback. Store this feedback on a feedback board and decide the

goal for the next sprint(s) together with the end-users. Repeat this until you reach

your BHAG.

https://www.viktor.ai/white-papers/product-backlog-template-to-track-the-app-development-process

11

12

In this chapter, we will explain the importance of and best way to go about the first

steps: defining your dream, mapping the process, selecting somewhere to start, and

designing and planning the app. But before all of this, we will talk about gathering the

right team. Remember, creating successful applications is all about people.

13

Building an application isn’t done by software engineers only. In the ideal situation, it

should be a collaboration between the software developers who write the code, the

domain experts who have the specialised knowledge (e.g. geotechnical engineering),

the end-users who are going to use the application once it is finished, and the

product owner who is the bridge between all of them.

Sometimes the domain expert is also the one building the tools, and that is fine.

However, even though it is possible for one person to take on multiple roles, this does

not mean that a role can simply be left out or that you won’t need to have separate

end-users to test your tool. Especially the latter is the first and biggest mistake you

can make: Assuming that, because you are able to use a tool and you find it handy,

other people will think this as well. So, it is important to involve a representative

group of end-users from the very beginning of the development on.

14

An application can be built for all kinds of processes, such as automating a repetitive

task and making people’s work more fun. Maybe you have a big idea and want to build

a large and complex application. That is nice; we like that! Having such a point on the

horizon is great and works very motivating. However, creating such an extensive

application can also become very complex and frustrating. Well, we are here to tell

you: Don’t let this stop you; we have a solution to make it work!

Building an awesome application requires creativity. Therefore, we recommend

people to open your mind, get out of there comfort zone and don’t be scared to give

some new things a try. Think about the big dream you want to achieve. It will drive

the development and be the motivation to keep forward. Dream in something like ‘I

want to automate the design of a tunnel completely’, and when thinking about it,

don’t focus on why it is not possible.

Here we have a short story to make the point. Jaap Wierenga is Lead Engineer

Hydraulic Engineering at Heijmans, a large Dutch construction company. He has

more than five years of experience making pretty impressive automation tools. One

of those is WILMA, a parametric design tool that automates the design of dikes. The

funny part? In the beginning, Jaap Wiernega was the first to say: “This is not possible

because of many, many, many, many technical reasons!”.

“I think it is very important to have a goal in mind, something to
work towards, even if it seems very complex or impossible to
achieve. Start with the easiest steps towards that goal. By starting
this process, you will find your way, but keep focus on the big goals
you want to achieve. Applications like this need to start small and
grow organically. With each step you will learn more about what is
possible and what you need. You will also discover new possibilities
and start getting more colleagues enthusiastic. It has a snowball
effect, by parametrizing part of the design, and then keep adding
small bits and pieces, you get closer sooner than you might have
expected.”

Jaap Wierenga

Lead Engineer Hydraulic Engineering at Heijmans

https://www.viktor.ai/customer-cases/24/parametric-design-tool-python-D-series-Plaxis-SCIA-Excel-BIM

15

Developing a complex application doesn’t necessarily mean you build a huge

application that will take years to develop. It is very well possible to build a complex

application without actually making it too complex for yourself and others. How? You

just need to break it down into smaller pieces. For example, start by building

something small that can solve only part of the problem, just like with the Agile

method, remember?

Dreaming of a big and complex application is good, but starting big can also tie the

knot around your application’s neck really quickly. Many projects have already failed

due to this approach. The problem? People are asking too much of themselves and

their end-users. Going from 0 to 100 at once is a lot to take in and makes the

development process unmanageable.

Thus, start small. But while you do this, you also need to think ahead. How else are

you going to get there? This can be along the lines of ‘How can I make my application

grow?’. To answer this question, let’s look at an example:

Imagine you are building an application to calculate the structures of a bridge

automatically. This is fairly complex, but you have to start building somewhere. This,

for example, means that at first, you can only calculate certain parts of the structure.

This may not seem much, but if you keep working on that, your application could be

able to design an entire bridge at just the push of a button with time. Believe us; a lot

is possible if you set your mind to it.

Now that you have a big dream, it’s time to flesh out how you will get there. The key

to improve and automate a workflow is to understand it fully. Start creating a

workflow diagram of the process that you want to turn into an application. For your

workflow diagram, you will map out the whole process from start to finish with all

details included. Remember, while a software developer can be super powerful in

making calculations, they are terrible with improvisation.

16

Here are five reasons why it is worth investing time in a good workflow.

• Overview and clarity: The diagram is important for everyone. Not only for the

domain expert(s) to keep an overview of the workflow but also for the

developer who will turn it into an application. All the steps in the workflow

must be incorporated, even if everyone is assumed to know them. It is funny

to notice that people often overestimate how well they know the working

process of a colleague, while in reality, this is not true at all. It is good that

everyone is on the same page.

• New insights: Humans are creatures of habit. A field specialist may find it

logical to do things as he has always done it. A programmer, however, may look

at it from a very different angle. Working together on the workflow and discuss

all detail is an excellent opportunity to improve the process.

• Anticipate critical aspects: Creating a workflow diagram helps understand the

details and identify possible critical elements of the development. This can

avoid a big headache later. Some important discussions are, for example,

which software packages are used? Does this software have an API? How does

information flow? In which format the data is share, and is this always the

case?

• A common language: By including the terminology of each part into the

workflow diagram, you clarify how vocabulary should be used. This is

important to avoid misunderstandings when multiple domain experts and

developers are involved in the process.

"When you start looking at a problem and it seems really simple, you
don't really understand the complexity of the problem. Then you get
into the problem, and you see that it's really complicated, and you
come up with all these convoluted solutions. That's sort of the middle,
and that's where most people stop… But the really great person will
keep on going and find the key, the underlying principle of the problem
— and come up with an elegant, really beautiful solution that works.

Steve Jobs

17

• Evaluate edge cases: Most time, a workflow diagram is made for the ‘standard’

situations that occur in about 95% of the cases. This is fine; you don’t want to

overcomplicate things at the beginning. Once you are confident about having

the proper workflow, try to evaluate some special situations. Maybe you don’t

want to include these cases at the beginning of the development but making

everyone aware of them can make the difference between incorporating them

in the future or not.

Once you have the final workflow diagram, you can figure out which (if not all) parts

of the workflow can be made into an application. If the process is already contained,

the whole thing can be an application. If the process is very large, start small and

make it big.

To select the first step, think about two things: Maximum impact and feasibility. In

other words, where can you make a significant improvement or save a lot time with

little effort? That is always a good point to start.

SCIA model

Geometry Plate

DESIGN STRUCTURAL REINFORCEMENT UNITY CHECKS

GEOTECHNICAL

Moments Plate

Loads

Crack width

Shear force

Pile loads

Rotation foundation

Pile bearing capacity

Calculation main
reinforcement Plate

Calculation shear
reinforcement Plate

Calculation Pile
reinforcement

Calculation settlement
Piles

Spring stiffnesses
Piles

Calculate horizontal
spring stiffnesses

Geometry Piles

Shear forces Plate

Internal forces Piles

Geotechnical input
data

Example of a workflow diagram

18

A user story is an informal, general explanation of a software feature, written from

the perspective of the end-user; something that the user should be able to do in the

application once it is finished. This helps the developer to understand what the end-

user is trying to accomplish when using the application and serves as guideline when

creating the different features. This form is chosen because the goal of the

application is ultimately presenting value to the end-user.

User stories are usually built in the from ‘As a user, I want to…’.

Examples of user stories are:

• As a user, I want to create and manage projects inside the app
• As a user, I want to design different bridges within each project
• As a user, I want to visualise the bridge as a 3D model
• As a user, I want to compare the results of different bridge designs

If you are creating a complex app, the user stories that are given as example here

could be too broad for a developer. In that case, it is recommended to create topics

and think of more specific user stories per topic. For example, we will take the first

user story from the previous list, assign it a topic, and make it more specific:

Topic: Manage and create projects inside the app

• As a user, I want to create projects
• As a user, I want to add properties to a project such as: The clients’ name, a

project code, and a date
• As a user, I want …

Tip:

Keep in mind that sometimes it is more important to communicate

what you want to achieve and why you want to achieve it than how you

are going to do it. Making super-specific requirements can have a

negative effect on the development speed and quality of the product.

Be clear about what you want to achieve but give the developer the

freedom to find the best solution from their own perspective.

19

After you have gathered your team and decided on which processes you are going to

incorporate and how, you should also make a planning on when you are doing all of

these things. To ensure success, it is important to think about which steps should be

taken at every moment of developing your application and make time estimations

based on that before you start programming.

Even though the end-goal is not specified completely within the Agile method, a time

estimation should be made on when you will reach a finished product, nevertheless.

This can be done based on the workflow diagram and user stories. For each of the

user stories, a separate time estimation can be made thinking it is an isolated code

block designed for a specific function. This is a good method because a time

estimation is easier to make when it is for isolated functions that can be

implemented next to each other instead of for the whole application at once.

Having a time estimation based on user stories also has other benefits: You can be

very transparent about the progress to all parties involved and have a clear way to

compare expectations and reality (what was easier than you expected? And what was

harder and took more time and why?). This transparency helps generate mutual

understanding and trust, which is beneficial when discussing any deviation from the

original planning.

Tip:

When making a time planning, also take other aspects into account like

communication with the end-users, project management, reviewing

each other’s code, writing test, etc.,

20

It is recommended to use a product backlog to keep track of time, budget, and

progress. In the product backlog, you will add all user stories organised by topic, a

time estimation for each user story, and it’s progress status. Examples of status could

be: Pending, in development, under review, ready for release, and approved by client.

In the picture you can see an example of a product backlog. You can download the

product backlog template from the VIKTOR website

Example of a product backlog

https://www.viktor.ai/white-papers/product-backlog-template-to-track-the-app-development-process

21

22

With a clear idea for an application, all your processes mapped out, user stories and

requirements defined, and a time planning prepared, coding can finally start! In this

chapter, we will not go into the specifics on how to code your application but rather

on where a good place to start is and how you can best manage your code throughout

the development process, so you end up with a truly successful application.

23

Just as with the entire development process of your application, with coding it is also

important to dream big but start small. For example, by starting with a mock-up user

interface. You can build this interface within a day to get a clear picture of how the

elements (parameters, input, and output) interact with each other. You can add some

dummy calculations, models, graphics, and reports to complete the picture. Together

with the end-users and product owner, you can look at the mock-up and decide on

which parts are good and which things should be adjusted or changed. This way, you

can quickly get a broad view of what your end-product will look like, without putting

lots of effort into completely working out all kinds of different options.

Only after you have built a successful mock-up, the coding of the logic can start. Don’t

worry, not all at once. Start with something small and expand from thereon,

according to the product backlog you made.

We recommend trying that you try to connect all the islands of information first. Try

creating a fully functional but very simplistic code that goes through all parts of the

workflow. Just take a very simple calculation, it does not matter if you hard code

some things or it only works for one case. The most important thing that you want to

prove here is that you are able to automate the workflow as planned. The worst thing

that can happen is that you fully develop one part of the workflow and later discover

that you are not able to connect that part to the next one.

Once you have verified that the complete system is working, you can start improving

each part and make it more complex.

“First, solve the problem. Then, write the code.”

Stijn Jansen

Head Application Development at VIKTOR

24

On bigger projects, there are often multiple developers working on writing the code.

To keep a clear overview, it is good to have a structured way of working and are

somehow able to keep track of everyone’s progress and adjustments. This is also vital

to keep all parts of the code compatible with each other.

We recommend using a code sharing platform with a version control system, such as

GitHub or GitLab. These platforms have several benefits, such as:

Version control: Everyone that is working on a code will always work with the right of

it. No version 1, version 2, version 3, flying around anymore. If someone changes a part

of the code, the system immediately tracks this change, and everyone is immediately

able to see it as well.

Improved collaboration: Code sharing platforms allow people to work on one big

project, but still have their own separate ‘branch’ (part of the code) within. You are able

to change your own code and later merge the branch into another branch and make

sure everything stay compatible. You can also see and check the code that others are

working on.

Development branches visualisation

25

Issue management: To remain in control over the different parts of the code that are

worked on, different issues can be created for specific features. Each of these issues

can be linked to one of the user stories. On a code sharing platform, you can link

deadlines to issues as well. This way, the planning and controlling the project is done

easily and all in one place.

Sustainability through sharing: Because it is possible to check each other’s code when

you’re using a code sharing platform, developers are more likely to write code that

other people will be able to understand. This benefits not only other people but

developers themselves as well. When others have difficulties understanding your code,

you will have difficulties understanding your own code too in a couple of weeks. Due to

the sharing-aspect, working on a platform basically forces developers to write

futureproof code that enables them and others to work with on the long term. So, even

after you may have taken a break from it for a while.

Sustainability through commenting: Another functionality of the platform is that it

allows people to add comments in the code. This way, you can ask specific questions,

suggest changes with a clear focus, or just look at it from different perspectives. The

ability to check on each other’s code ensures for a higher quality code. Bugs are

detected and solved quickly. You can also help each other with difficult parts and have

discussions on about how things can be done differently or more efficient. When you

have to explain your code to a colleague, it makes it clearer for both parties. This way it

also becomes more concise with rest of the code.

26

27

It can be difficult to determine if the underdeveloped tool is generating real value for

the end users and which of the many requested features should be made first. Of

course, you already made your planning and have outlined what you are going to do.

Still, it can be difficult to choose which user story requires the most attention and if

the feature under development really solves the problem. The solution: actively

search for feedback of the end-users and process it carefully. In this chapter, it will be

explained how you can do this best.

28

People underestimate the importance of end-users testing the app and the time that

this requires. After all, what could go wrong, right? Well, developers are humans too!

So even if they take their best effort to deliver a bugs-free app, we guarantee there is

still a way to make it malfunction. This is especially the case when the developer does

not have any domain knowledge, which make it extra hard for them to check the

results and think of all kind of unusual but still realistic cases. An experienced domain

expert, on the other side, can come up with all kinds of special cases and is able to

identify in a split second that a results is a bit off.

Everyone has a busy job. Experience has shown that not making a time-planning and

setting deadlines to test the application, leads to people not testing it at all in the

end. Testing the app and giving feedback will be low on people’s to-do lists and only

happen once they have a good reason to do it. This often reads: In case something

really goes wrong. Trust us, you really don’t want to be in that situation, especially

close once you get closer to the deadline.

Getting feedback on a regular basis really helps improving the application. With

rounds of feedback every two weeks, bugs, errors, and other mistakes and/or

misunderstandings can be solved quickly.

“It’s hard enough to find an error in your code when
you’re looking for it; its even harder when you’ve
ASSUMED your code is ERROR-FREE."

Steve McConnell

Author of bestselling software engineering textbooks

29

Throughout the process, you want to test your application so you can receive

feedback on both objective aspects, such as whether the correct answer is presented

or not (for example with calculations), and subjective aspects, such as the layout and

usability.

Benefits of testing are:

If feedback is given in time, problems later on can be prevented and anticipated. You

don’t want to build on loose soil. Otherwise, things can get really ugly. It is crucial to

schedule not only the coding sprints, but also the tests and following feedback

moments with everyone involved. Such feedback moments are not just 5 minutes of

talking but rather take up several hours of testing and reviewing the application

thoroughly to add the most the value.

Most times it is clear (but maybe laborious) how you get the right numerical solutions

to a problem. However, designing the interface for a good user experience can be a

much more complex and abstract task. The layout and usability of an application are

subjective aspects and therefore differ from user to user. To get the most optimal

results, it is important to gather feedback from as many end-users as you can get. All

of this information should then be combined to build the final concept version of

what your application is going to look like, tending to the most common and

important needs of every user.

Not only end-users but also developers benefit from this feedback. In sessions with

domain experts, developers often gain the best insights into the technical processes

that are happening and then come up with creative ways to solve problems!

 Additionally, it is possible that you find out a user-story appears to be too broad

because it is not formulated clearly enough for developers to understand well. During

these feedback moments, problems like this can be discussed and anticipated. Now

you know your user-story needs to be described in more detail, so that the developers

have a clear image of where they are headed and what concrete steps they need to

take to get there.

30

If you start building without having feedback rounds in-between, an assumption you

made at the beginning may turn out to be wrong in the end. This means you can

throw away a lot of code and start all over again. A frustrating and time-consuming

way of developing, in our opinion.

When giving feedback, try to be as specific as possible. Developers cannot read

anyone’s mind and certainly are no domain experts. So, don’t take anything for

granted. To make sure feedback is as specific as possible, always take the following

aspects into account:

• Who: Developers want to know who provided the feedback so they can reach

out to them to find a good solution together. Mention the feedback came

from you.

• Location: To which part of the app is this feedback relevant? In the input part

of the interface? Or some visualisation? A calculation? The menu? Etc. You

could also add a screenshot to clarify it even more.

• Condition: Did you find a bug? Please also report under which conditions this

bug happens so it can be reproduced and checked by the developer. For

example: I get error X when using input X when toggle button Z is activated.

• Priority: Feedback is good, but too much can be confusing. Please let people

know how important this feedback is. For example: not needed – nice to have

– should have – must have – urgent to have.

• User story: Can you relate this feedback to a user story of the backlog?

“Your most unhappy customers are your greatest source
of learning”

Bill Gates

31

It is recommended to use an issue board to keep track of all the feedback you have

gathered from your end-users. In this board, you can indicate which items of

feedback already have been processed and which items should still be worked on.

In a small application team, sending feedback directly to the developer seems more

convenient than making a whole issue board. However, this isn’t the best practice.

The more people that get involved in the application, the more reason for why you

need to have an issue board to keep track of all the suggestions. Sending the

feedback directly via email to the developers creates a lot of extra work for everyone,

since that way there is no clear overview of the to-do’s.

If you want to keep it simple, you can create an issue board in a worksheet. This sheet

contains all the feedback, problems, and other comments that you have gathered up

to this point. Also, relevant information such as when the feedback was given, who

gave the feedback, an extra description, the priority, and if the feedback has been

incorporated and approved.

Here is an example of such an issue board in a worksheet:

If you want to bring it to a more professional level, you can use platforms such as

GitHub, GitLab, or others. Here you can make issues for each feedback point, assign it

to a developer, classify them, give them labels, and plan when they will be solved

(sprints planning). You can also start a discussion on each issue, where you can ask for

more input from clients or developers. Additionally, you create a new branch to solve

each issue or a collection of them. A branch is a copy of the code on which you can

Date Author

Description feedback

What is the current situation and what is the desired Priority Approval Status

1 26/07/2021 John Doe

Coordinates are given in [m] but are actually in degrees latitude

and longitude. Must have Ready for release

2 26/07/2021 John Doe

Using a download button in blue will fit better with the house

style Nice to have Finished

3 26/07/2021 John Doe Show coordinates of the CPT on a mapview Must have Finished

4 26/07/2021 John Doe

Add the pile tip levels (and other levels) in the geometry

visualization Should have Ready for release

7 02/08/2021 John Doe

To avoid wrong results, following logic should be incorporated

in the program:

A < D and A>=C

B <= C

E > A Should have Finished

32

work solving the issue without affecting the original code. Once you have solved the

issue, you can merge the branch with the ‘main code’. This also makes it possible to

solve several issues simultaneously with different developers, without breaking the

main code.

Overview of issues on GitLab

33

34

There are several things you should consider throughout the development process

that help you add even more value to your application. In this chapter, we will provide

a quick recap and some tips and tricks that help you increase adoption of your

application even more!

A good way to add more value to your application is by having clear communication

and efficient collaboration between your team members, thus the product owner,

domain experts, developers, and the end-users.

Here are some tips you can use to boost teamwork to make the most out of your app:

• Map your process in detail: Understanding your process in full detail is vital

to a successful application. Bring all people involved together, create a

workflow diagram, and discuss all the details. Give everyone enough time to

speak. The greatest improvements often arise thanks to this process.

• Bring developers and end-user together: It is impossible for developers to

build a perfectly good and correct application that fulfils all end-users’

wishes without talking to the end-users on the regular. This is also true the

other way around. If an end-user has a great idea for an application but is not

able to talk to a developer about this, their ideas will never be considered in

the first place. Doing everything through an issue board does not lead to the

best results. Instead, bring everyone together so they can communicate

directly.

• Have independent testers: In parallel to your developments, you should

have independent testers that test and provide feedback on the

developed features. End-users that are experienced with your application

may only think in advanced features. New people, however, bring new

insights. For example: What is missing for people to have a quick start?

You need both kind of testers to create a great application that others will

want to use.

• Create advocates: The best thing that can happen for the adoption of

your application is having an enthusiast end-user who wants to tell

everyone the benefits of using your app. People like this do not simply

show up in the blink of an eye but come from a close relation to the

35

product throughout the whole process. After you found testers, help

them to own this role. Think about how you can help, maybe it is as easy

as simply inviting them to do a presentation or talking to their manager so

they have more time for this process.

It is simple: People will not use your application if it is unfriendly, no matter how

wonderful the code in the background is. Don’t overcomplicate things. Less is more.

Here are a few things to think about:

• The workflow inside the app should be recognisable by the end-users. Try to

emulate the current workflow as much as possible and include the same

steps wherever you can.

• It should be clear what an end-user is supposed to do to get results. Use clear

descriptions for all element that the end-user interacts with, such as the

input fields. Provide additional info (wherever needed) using tooltips or other

means.

• The application should react/calculate fast otherwise people will lose interest

and patience quickly. As a developer you can do a lot to your code to improve

performance. Yes, sometimes calculations are just heavy, like running a FEM

model. In that case try to divide the fast parts of the calculations from the

intensive ones. Maybe it is possible to at least show part of the results

quickly?

• Make your app robust and avoid that the user gets errors. If they get, make

sure they have a clear error message that helps them make the app work

again. There is nothing more annoying than having to solve 10 errors before

getting any results.

We often hear that people don’t want to use an app because it is a ‘black box’. This is

understandable. For example, put your self in the shoes of an engineer that needs to

use the application to calculate a bridge. He doesn’t know what the app is doing, but

he is supposed to put his signature on the design without having any idea about all

the calculations and processes behind it. Yea, sure… we bet he prefers his old and

trusted Excel sheet to do the work instead.

36

Here some things you can do to help end-users understand what is happening behind

the scenes:

• Use verified calculations. When looking into how to automate a workflow,

you will discover that there are all kind of spreadsheets that people have

been using for years, and most important: That they trust. Avoid reinventing

the wheel, just incorporating those same models into the app. It will give

people more trust.

• Show additional information that is relevant for the end-user and include

intermediate results. Thus, don’t just give the final result but also include the

information used to get to there. For example, which material properties,

geometry and forces are used in the calculation. Maybe you could also

generate a calculation report?

• Make models available. Maybe the end-user does not need to know all the ins

and outs of your code, as long as the calculation can be verified. For example,

does the app optimise a design based on a FEM model or Excel sheet? Make it

possible to download the final model/sheet, so that the end-users can check

it independently.

37

38

Like it is explained throughout this manual, developing an application is a circular

process without a set-in-stone end goal. Just as the definition of the word

development, the process of building an application is something that is “growing

and improving along the way”. You start with a big idea, a great complex process, that

you try to make easier. If you think big and clearly define the point on the horizon

that you are working towards, you have a good starting point. Start little, with easy

and small steps. Then, become more practised as you gain experience and review your

previous thoughts and creations. Only after doing that you can continue to the next

step. If you develop your application according to this way, you can continuously keep

a good overview, make clear progress, keep receiving and processing feedback, and

add the most value in the end!

We hope this guide has been proven useful throughout your journey of building your

own application. If you have any questions or if you are interested in the possibilities

an application development platform can offer you, don’t hesitate to contact us. More

information about VIKTOR and ways to get in touch can be found on the next page.

39

VIKTOR makes it really easy to build powerful web applications and share them with

everyone you want. The apps have a user-friendly and interactive interface, where you

can present results with all kinds of visualisations, like 3D models, graphs and maps.

You don’t need to worry about integrating with different software packages, the front-

end, back-end, database management, user-management system, etc.. We automate

all the boring stuff, so you can focus on creating awesome apps that provides real

value.

Ready to streamline your process? Contact us!

Contact person:

Anande Bergman

Developers Relations

abergman@viktor.ai

mailto:abergman@viktor.ai

40

